Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters










Database
Main subject
Language
Publication year range
1.
J Colloid Interface Sci ; 660: 746-755, 2024 Apr 15.
Article in English | MEDLINE | ID: mdl-38271810

ABSTRACT

Poly(3,4-ethylenedioxythiophene):poly(styrenesulfonate) (PEDOT:PSS) has been widely used as a hole injection material in quantum dot (QD) light-emitting diodes (QLEDs). However, it degrades the organic materials and electrodes in QLEDs due to its strong hydroscopicity and acidity. Although hole-conductive metal oxides have a great potential to solve this disadvantage, it is still a challenge to achieve efficient and stable QLEDs by using these solution-processed metal oxides. Herein, the state-of-the-art QLEDs fabricated by using hole-conductive MoOx QDs are achieved. The α-phase MoOx QDs exhibit a monodispersed size distribution with clear and regular crystal lattices, corresponding to high-quality nanocrystals. Meanwhile, the MoOx film owns an excellent transmittance, suitable valence band, good morphology and impressive hole-conductivity, demonstrating that the MoOx film could be used as a hole injection layer in QLEDs. Moreover, the rigid and flexible red QLEDs made by MoOx exhibit peak external quantum efficiencies of over 20%, representing a new record for the hole-conductive metal oxide based QLEDs. Most importantly, the MoOx QDs afford their QLEDs with a longer T95 lifetime than these devices made by PEDOT:PSS. As a result, we believe that the MoOx QDs could be used as efficient and stable hole injection materials used in QLEDs.

2.
Nanomaterials (Basel) ; 13(6)2023 Mar 08.
Article in English | MEDLINE | ID: mdl-36985868

ABSTRACT

Delicate design and precise manipulation of electrode morphology has always been crucial in electrochemistry. Generally, porous morphology has been preferred due to the fast kinetic transport characteristics of cations. Nevertheless, more refined design details such as the granularity uniformity that usually goes along with the porosity regulation of film electrodes should be taken into consideration, especially in long-term cation insertion and extraction. Here, inorganic electrochromism as a special member of the electrochemical family and WO3 films as the most mature electrochromic electrode material were chosen as the research background. Two kinds of WO3 films were prepared by magnetron sputtering, one with a relatively loose morphology accompanied by nonuniform granularity and one with a compact morphology along with uniform particle size distribution, respectively. Electrochemical performances and cyclic stability of the two film electrodes were then traced and systematically compared. In the beginning, except for faster kinetic transport characters of the 50 W-deposited WO3 film, the two electrodes showed equivalent optical and electrochemical performances. However, after 5000 CV cycles, the 50 W-deposited WO3 film electrode cracked seriously. Strong stress distribution centered among boundaries of the nonuniform particle clusters together with the weak bonding among particles induced the mechanical damage. This discovery provides a more solid background for further delicate film electrode design.

3.
Nanomaterials (Basel) ; 12(23)2022 Nov 28.
Article in English | MEDLINE | ID: mdl-36500860

ABSTRACT

A flexible thermoelectric device has been considered as a competitive candidate for powering wearable electronics. Here, we fabricated an n-type Ag2Se/Ag composite film on a flexible nylon substrate using vacuum-assisted filtration and a combination of cold and hot pressing. By optimising the Ag/Se ratio and the sequential addition and reaction time of AA, an excellent power factor of 2277.3 µW∙m-1 K-2 (corresponding to a ZT of ~0.71) at room temperature was achieved. In addition, the Ag2Se/Ag composite film exhibits remarkable flexibility, with only 4% loss and 10% loss in electrical conductivity after being bent around a rod of 4 mm radius for 1000 cycles and 2000 cycles, respectively. A seven-leg flexible thermoelectric device assembled with the optimised film demonstrates a voltage of 19 mV and a maximum power output of 3.48 µW (corresponding power density of 35.5 W m-2) at a temperature difference of 30 K. This study provides a potential path to design improved flexible TE devices.

4.
Adv Sci (Weinh) ; 9(15): e2104488, 2022 05.
Article in English | MEDLINE | ID: mdl-35240001

ABSTRACT

A new strategy is developed in which cadmium-doped zinc sulfide (CdZnS) is used as the outermost shell to synthesize red, green, and blue (RGB) quantum dots (QDs) with the core/shell structures of CdZnSe/ZnSe/ZnS/CdZnS, CdZnSe/ZnSe/ZnSeS/CdZnS, and CdZnSe/ZnSeS/ZnS/CdZnS, respectively. Firstly, the inner ZnS and ZnSe shells confine the excitons inside the cores of QDs and provide a better lattice matching with respect to the outermost shell, which ensures high photoluminescence quantum yields of QDs. Secondly, the CdZnS shell affords its QDs with shallow valence bands (VBs). Therefore, the CdZnS shell could be used as a springboard, which decreases the energy barrier for hole injection from polymers to QDs to be below 1.0 eV. It makes the holes to be easily injected into the QD EMLs and enables a balanced recombination of charge carriers in quantum dot light-emitting diodes (QLEDs). Thirdly, the RGB QLEDs made by these new QDs exhibit peak external quantum efficiencies (EQEs) of 20.2%, 19.2%, and 8.4%, respectively. In addition, the QLEDs exhibit unexpected luminance values at low applied voltages and therefore high power efficiencies. From these results, it is evident that CdZnS could act as an excellent shell and hole injection springboard to afford high performance QLEDs.


Subject(s)
Quantum Dots , Cadmium , Color , Light , Quantum Dots/chemistry , Sulfides , Zinc/chemistry , Zinc Compounds/chemistry
5.
ACS Appl Mater Interfaces ; 12(15): 17481-17491, 2020 Apr 15.
Article in English | MEDLINE | ID: mdl-32216330

ABSTRACT

This study reports a high-performing nonprecious metal catalyst for the oxygen reduction reaction that is composed of highly dispersed Fe centered active sites on bamboolike carbon nanotubes. NH2-MIL-88B is used as the iron source and ZIF-8 as the carbon source. The precursors are uniformly mixed by ball milling, which destroys their crystal structures. A bamboolike carbon nanotube network results from the pyrolysis of the mixed precursors. The morphology is controlled by the proportion of the precursors and the pyrolysis temperature. The catalyst shows excellent oxygen reduction activity in both half-cell and full-cell tests. The onset potential and half-wave potential are 0.96 and 0.78 V vs RHE, respectively. In the fuel cell test, the current density reaches 0.85 A cm-2 at 0.7 V and 1.24 A cm-2 at 0.6 V (iR-corrected). The novel synthesis approach of the highly dispersed catalyst provides new strategy in the design of high effective nonprecious metal catalysts for fuel cell.

6.
Small ; 11(27): 3377-86, 2015 Jul 15.
Article in English | MEDLINE | ID: mdl-25682734

ABSTRACT

This work reports a detailed investigation of the template-free synthesis of Pt nanowires via the chemical reduction of Pt salt precursors with formic-acid. The results indicate that both the oxidation state of Pt in the salt and the pH value of the aqueous solution comprising the platinum salt and formic acid are critical factors for the formation of Pt nanowires. Nanowires are obtained from platinum atoms in a +IV oxidation state, with ligating chloride anions (H2 PtCl6 and K2 PtCl6 ) or nonligating chloride anions (PtCl4 ). Increasing the pH of the aqueous Pt salt and HCOOH solution leads to a drastic reduction of the nanowires' length between pH 3 and 4.5. A mechanism involving formate as a reducing agent and formic acid as a structure directing agent explains these results. The Pt nanowires are stable up to 200 °C; therefore, these nanowires are suitable for use as catalysts in proton-exchange-membrane fuel cell. The optimized synthesis conditions are then selected for investigating the kinetics of the oxygen reduction reaction (ORR) of such nanowires in a fuel cell. The ORR mass activity of the Pt nanowires is 130 A g(-1) Pt at 0.9 V iR-free potential; significantly higher than that of two commercial Pt/C catalysts tested in the same conditions. The higher mass activity is explained based on a higher surface specific activity. Accelerated degradation tests indicate that Pt nanowires supported on carbon are as stable as Pt nanoparticles supported on carbon.

SELECTION OF CITATIONS
SEARCH DETAIL
...